Thursday, January 11, 2018

My contributions on this year APS March Meeting (2018)

American Physics Society organises another March Meeting for a week this year again. The venue will be Los Angeles and I'll be chairing again this year another great invited session of interesting speakers.

On Thursday morning 8-11AM, I highly recommend those interested in quantum thermodynamics and quantum information theory and quantum computation to attend the following exceptional session:

Session R42: Progress in Quantum Thermodynamics

Sponsoring Units: DQI GSNP
Chair: Mohammad Ansari, Forschungszentrum Julich
Room: LACC 502B

Thursday, March 8, 2018
8:00AM - 8:36AM
R42.00001: Progress in Thermodynamics of Superconducting and Hybrid Circuits
Invited Speaker: Jukka Pekola , Jonne Koski , Bayan Karimi , Alberto Ronzani , Jorden Senior , Olli Saira

Thursday, March 8, 2018
8:36AM - 9:12AM
R42.00002: Fluctuation Theorem for Many-Body Pure Quantum States
Invited Speaker: Takahiro Sagawa

Thursday, March 8, 2018
9:12AM - 9:48AM
R42.00003: Strong coupling quantum thermodynamics and beyond
Invited Speaker: Q. Jens Eisert 
Thursday, March 8, 2018
9:48AM - 10:24AM
R42.00004: Thermoelectrics of interacting nanosystems - Exploiting fermion-parity superselection instead of time-reversal symmetry
Invited Speaker: Janine Splettstoesser , Jens Schulenborg , Joren Vanherck , Angelo Di Marco , Maarten Wegewijs 
Thursday, March 8, 2018
10:24AM - 11:00AM
R42.00005: Quantum and Information Thermodynamics: A Unifying Framework Based on Repeated Interactions
Invited Speaker: Massimiliano Esposito 

By the way my own talk will be on the same day, an hour after this session is over, in another room.  I'll give a talk about a new formalism to deal with Transmon-like qubits. More info can be found below:

Session S39: Superconducting Circuits: Modeling

11:15 AM–2:15 PM, Thursday, March 8, 2018
LACC Room: 501B

Sponsoring Unit: DQI
Chair: Antonio Corcoles, IBM T J Watson Res Ctr

Abstract: S39.00006 : Effective Hamiltonian in superconducting qubits

12:15 PM–12:27 PM
Room: LACC 501B


Mohammad Ansari
(Forschungszentrum Juelich)


Mohammad Ansari
(Forschungszentrum Juelich)
Qubits with more than two energy levels, such as superconducting transmons, usually are externally driven in order to engineer one and two qubit gates. However due to the presence of higher excited levels the fidelity of the gates requires improvement. Such a system carries a large Hilbert space and recognizing effective qubits requires to use perturbation theory. This puts a lage limitation on the system parameters and interactions. We discuss a method that allows to go beyond regular perturbative limitations and separates classical effects from quantum fluctuations in the Hamiltonian of a weakly-anharmonic qubits. We compare results taken from applying Schrieffer-Wolff transformation, Least action principle, and our method. Our results will become practical tools for experimental efforts in circuit QED.

Thursday, March 8, 2018
11:15AM - 11:27AM
S39.00001: A Simple Impedance Formula for the Exchange Coupling Rates between Low Anharmonicity Qubit Modes in Superconducting Quantum Processors
Firat Solgun , David DiVincenzo , Jay Gambetta

Thursday, March 8, 2018
11:27AM - 11:39AM
S39.00002: Modelling Capacitance Effects for Superconducting Persistent Current Qubits
Muhammet Ali Yurtalan , Adrian Lupascu , Jiahao Shi

Thursday, March 8, 2018
11:39AM - 11:51AM
S39.00003: Design and Analysis of Superconducting Qubits for Extensible Surface Coding
Nadia Haider , Stefano Poletto , Alessandro Bruno , David Michalak , Roman Caudillo , Nandini Muthusubramanian , Ramiro Sagastizabal , Brian Tarasinski , Cornelis Christiaan Bultink , Michiel Adriaan Rol , James Clarke , Leonardo DiCarlo

Thursday, March 8, 2018
11:51AM - 12:03PM
S39.00004: Surface Current and DC Cross Talk in Superconducting Quantum Devices
Alireza Najafi-Yazdi

Thursday, March 8, 2018
12:03PM - 12:15PM
S39.00005: A Machine Learning Approach to Superconducting Circuit Design
Tim Menke , Florian Häse , Simon Gustavsson , Andrew Kerman , William Oliver , Alan Aspuru-Guzik

Thursday, March 8, 2018
12:15PM - 12:27PM
S39.00006: Effective Hamiltonian in superconducting qubits
Mohammad Ansari

Thursday, March 8, 2018
12:27PM - 12:39PM
S39.00007: Shape Design Optimization for 3D Integrated Superconducting Quantum Processors
Alireza Najafi-Yazdi , Guillaume Duclos-Cianci , Kevin Lalumiere

Thursday, March 8, 2018
12:39PM - 12:51PM
S39.00008: Characterization of Transmon Qubit Gate Operations based on Time-dependent Simulations with Realistic Noise
Michael O'Keeffe , Andrew Kerman , Kevin Obenland

Thursday, March 8, 2018
12:51PM - 1:03PM
S39.00009: Impact of Non-Local Electrodynamics on Flux Noise and Inductance of Superconducting Qubits
Pramodh Senarath Yapa Arachchige , Tyler Makaro , Rogério de Sousa

Thursday, March 8, 2018
1:03PM - 1:15PM
S39.00010: Quantum Langevin Equations for the Brune Multiport Hamiltonian
Nichiolas Materise , Frank Graziani , Keith Ray , Heather Whitley , Vincenzo Lordi

Thursday, March 8, 2018
1:15PM - 1:27PM
S39.00011: Longitudinal Coupling for Fast QND Measurement: Numerical Study
Mathieu Lachapelle , Jerome Bourassa , Alexandre Blais

Thursday, March 8, 2018
1:27PM - 1:39PM
S39.00012: Systematic Perturbation Theory for Frequency and Lifetime Renormalization of Superconducting Qubits
Moein Malekakhlagh , Alexandru Petrescu , Hakan Tureci

Thursday, March 8, 2018
1:39PM - 1:51PM
S39.00013: T1 renormalization of transmon qubits versus drive power
Hakan Tureci , Moein Malekakhlagh , Alexandru Petrescu

Thursday, March 8, 2018
1:51PM - 2:03PM
S39.00014: Critical Slowing Down in Circuit QED
Giovanna Tancredi , Paul Brookes , Themis Mavrogordatos , Andrew Patterson , Joseph Rahamim , Eran Ginossar , Marzena Szymanska , Peter Leek

Thursday, March 8, 2018
2:03PM - 2:15PM
S39.00015: Excitable Dynamics in a Josephson Junction Circuit
Gerasimos Angelatos , Hakan Tureci


By the way I may prepare a nice poster too to post on the wall, so please feel free to find my poster about a different topic:

Session G60: Poster Session I

2:00 PM, Tuesday, March 6, 2018
LACC Room: West Hall A

Abstract: G60.00302 : Shannon information theory in heat engines


Mohammad Ansari
(Forschungszentrum Juelich)


Mohammad Ansari
(Forschungszentrum Juelich)

Open quantum system techniques help us to understand how density matrix evolve in subsystems. This is only useful to evaluate time evolution of physical quantitues, which are linear in density matrix. Shannon entropy is not so, in fact it is nonlinear in density matrix. We introduce a technique, called extended Keldysh formalism, to understand time evolution of nonlinear quantities in density matrix. As result we show that Shannon entropy can evolve using much larger class of Kubo-Martin-Schwinger correlators, therefore evaluation of Shannon entropy based on standard open quantum techniques, such as Lindblade equations etc., are misleading and inconsistent with quantum nature of entropy. We address inconsistencies and also address new results.

Monday, October 16, 2017

Multiple PhD positions – JARA Institute for Quantum Information (RWTH Aachen & Forschungszentrum Jülich)

The theory groups at the Institute for Quantum Information of the Jülich-Aachen Reasearch Alliance (JARA) are looking for highly motivated candidates to fill multiple PhD positions over the next few months (a DFG-funded position could start as soon as possible).

The doctoral projects will focus on theoretical studies of physical implementations of quantum information processing, such as superconducting and semiconducting qubits, and related enabling quantum technologies. The projects will be supervised by Dr. Ansari, Dr. Catelani, and/or Prof. Hassler, and may involve collaborations with leading experimental groups (IBM, Yale, Aalto, TU Delft).

Master’s degree (or equivalent) in theoretical condensed matter physics or a related field and proficiency in English are required. Preference will be given to candidates with experience in quantum transport, superconductivity, and related topics, but strong candidates from other fields are encouraged to apply.

The application material should include:

  • short letter of motivation ( 
  • CV & transcripts 
  • contact details (names & emails) of two possible referees 

For further information, or to submit an application, please contact one of us by email. Review of applications will start immediately and continue until all the positions are filled.

Mohammad Ansari (
Gianluigi Catelani (
Fabian Hassler (


Saturday, May 20, 2017

Entropy production in a photovoltaic cell

In the everyday world, the amount of disorder, or entropy, in an isolated system can only increase over time. This relation is described by the second law of thermodynamics. This indicates that not all of the energy we provide for a system can be converted into engineered work.

In quantum physics, however, the existence of such a law is obscure. One of the main reasons is that entanglement can dramatically alter the notions of disorder and equilibrium state. Instead of an analogue law, recently a correspondence has been found between entropy production and the statistics of energy transfers in a quantum system.

In my paper published recently at Physical Rev. B I studied how entropy is produced in a quantum heat engine. This helps us to explain how heat is dissipated in the engine. The engine is modelled by four electronic levels resonantly-coupled to thermal heat baths kept at different temperatures. Results show that quantum coherence that is induced by environment can significantly and nonlinearly modify entropy production in the cells. Consequently, the nonlinear entropy production can take place much slower or faster.

This determines under what conditions information in these cells can take a reversal flow from a cold to hot bath.

Ref:  Mohammad H. Ansari, Phys. Rev. B 95, 174302 (2017)
It is available online at

 I evaluate entropy production in a photovoltaic cell that is modeled by four electronic levels resonantly coupled to thermally populated field modes at different temperatures. We use a formalism recently proposed, the so-called multiple parallel worlds, to consistently address the nonlinearity of entropy in terms of density matrix. Our result shows that entropy production is the difference between two flows: a semiclassical flow that linearly depends on occupational probabilities, and another flow that depends nonlinearly on quantum coherence and has no semiclassical analog. We show that entropy production in the cells depends on environmentally induced decoherence time and energy detuning. We characterize regimes where reversal flow of information takes place from a cold to hot bath. Interestingly, we identify a lower bound on entropy production, which sets limitations on the statistics of dissipated heat in the cells.

Saturday, April 15, 2017

Another PhD position is available

Job type: PhD
Application deadline: Monday, June 5, 2017
Employer: Peter Gruenberg Institute (PGI-2)

Another PhD position is available to work at Peter Gruenberg Institute (PGI-2) and Juelich-Aachen Research Alliance Institute (JARA) in Forschungszentrum Juelich in Germany. The degree will be granted by RWTH University in Aachen. The student will work with Dr. Mohammad H. Ansari and the project can be started in the Summer or Fall 2017.

The purpose of the project is to develop relations between quantum computing models and physical devices. The project requires that you have basic knowledge of quantum physics and information, e.g. density matrix, decoherence, Bloch equation, correlations, nonequilibrium statistics, quantum information measures, Keldysh techniques, etc. We will collaborate with some theoretical and experimental research groups, such as the research group of Prof. D. DiVincenzo at PGI-2 and Prof. Y. Nazarov in Delft University of Technology.

For full consideration, please apply **as soon as possible** by sending your documents in *ONE pdf file* to "m.ansari AT", including:

1. your academic CV,
2. your academic transcripts and the list of publications,
3. a short essay relating your knowledge to recent papers written by Dr. Ansari (no more than 300 words ~ two paragraphs)
4. the names, affiliation, and email addresses of 2 or 3 referees, (make sure they are willing to send letters on time)

Please make sure to choose the following subject for your email: "Ph.D. position at PGI-2"

More updates about the position can be found at:

Monday, March 27, 2017

My talks on Entropy-Noise Correspondence

I am back from a loooong long trip into several cities in the US and Canada, where I gave a series of talks about my research.

In my trip to New Orleans, for the first time I saw real palm trees! The city has its own character within its cheesy streets full of excited visitors and free storytelling stations! I was also excited to see Mississippi river, which reminded me one of the cartoons I was watching when I was almost ten: the Adventures of Huckleberry Finn! At APS March meeting I enjoyed meeting some old friends from Japan, the US, Canada, Germany, Holland, Australia, etc, gave a short talk about "information contents of physical interactions" and enjoyed learning new things.

Later I traveled to Canada to give a series of talk in different places and to visit a research group for future collaborations. My schedule was very rich! I started with the University of Toronto, then went to Waterloo to visit and give a talk at the Institute for Quantum Computation (IQC) on how to measure entropy in quantum systems. +

As planned I also visited the Perimeter Institute in Waterloo too, where I got my PhD degree 9 years ago from within its old building, the post office building. The "new" building has changed a lot and now has a wired wing full of offices to somehow compensate its original land-wasting floor map. There were too many new faces there and almost nobody recognised me except a few of present faculty members. There I gave a talk in the quantum foundations seminars about the new entropy-noise correspondence we found last year +

These talks turned out to fall into the interest of two main communities: condensed matter theorists and quantum information theorists.

To provide equal opportunities to those not present in the cities yet like to form and express a judgement, I uploaded a short summary of my presentations here to be accessible to public. Please feel free to review.

M.H. Ansari